UCRL-WEB-228716

Moab at LC

Moabat LC- 1

Table of Contents

PIETACE ..o s e s 3
IEFOUUCTION ..o s 4
LCRM-MOGD TIANSIALION ...t 5
TOOI COMPATTISON ..o 5
TermiNOIOGY COMPAITSON ... seee oo 7
Environment Variables in LCRM @nd MO@D ...t 8

JOb Status (State) COMPATISON ... seesseeee s sseee e sseee oot 10
IMIOAD JOD STALES ... 11

Moab Equivalents 0f LCRIM JOD STALES ... 12

PSUB OPtiONS CONVEISION ... seee e seee s ssees e sees oot 14
Summary of Accepted, Ignored, Rejected PSUB OPLIONS ... 14

Script Converter (LCRM2MOAB)oooooooeeeoeeeeeeeseeeeoeeesees oo sseesseesseessseessseeesseessseessssee oo 16

BaSiC PSUB/MSUB OPLIONS ..o seessees e sseessees oo sseesssees e 17

Parallel PSUB/MSUB OPUIONS ... sseeesssees e 22
SRUN-Replaced PSUB/MSUB OPLIONSooooooeeoooeeeeoeeeeeeeoeeesoeesseessoeeesseessses e 23
SLURM-MOGD INTEIACTION ... et 24
[0 oI Tod 1= 0] 1o s 25
LIBLRM (Remaining Time) Alternatives for MO@D ... 26
LCRM Emulation Library (LIBLRMEMU) ... 28
LIBLRMEMU BaNK ROULINESccccoooooeooeeoeeeeesesseeeeeseessesseeseesssesssesssessseesssesssesssessssessesssessses e 28
LIBLRMEMU Signal EMUIEIONoocoooeeeeeeeeeeeeeeeeeeseee et 28
LIBLRMEMU PolliNG EMUIALION ... 29
LIBYOGRT RemMaining TIMe LIDIATYoooooooeoeeeeeeeeeeeeeeeee oo 30
Native M0oab and SLURM TIME APIS ... seessseees et 31
Requesting @ Signal FrOM MO ... 31

Polling for Time Remaining (Moab, SLURM) ... 32
DUSCIAIME ..ot s s e 33
(GG VATV (0 100 (=G0 34
AIPADEtICAl LISt OF KEYWOITSooccoooeeeeeeeeee oot 35

Date and Revisions

Moab at LC - 2

Scope:

Availability:

Consultant:

Printing:

Preface

This manual explains the role of the Moab Workload Manager in controlling and
scheduling batch jobs on LC production computers. The relationship between LCRM
(URL.: http://mwww.lInl.gov/LCdocs/dpcs) (the Livermore Computing Resource
Manager and Moab's predecessor) and Moab (including user tools, job-control options,
and job-status information), and between SLURM (URL.:
http://www.lInl.gov/LCdocs/slurm) (the Simple Linux Utility for Resource
Management) and Moab, both receive special attention and explicit comparison. LC
started to use Moab to gradually replace LCRM, working on top of SLURM, early
in 2007.

Moab will be introduced on each new OCF production computer starting with ATLAS.

For help contact the LC customer service and support hotline at 925-422-4531 (open
e-mail: Ic-hotline@IInl.gov, SCF e-mail: Ic-hotline@pop.lInl.gov).

The print file for this document can be found at:

OCF: http://www.llInl.gov/LCdocs/moab/moab.pdf
SCF: http://www.lInl_gov/LCdocs/moab/moab_scf.pdf

Moab at LC - 3

http://www.llnl.gov/LCdocs/dpcs
http://www.llnl.gov/LCdocs/slurm
http://www.llnl.gov/LCdocs/moab/moab.pdf

Introduction

Starting in early 2007, LC began gradually replacing its locally developed batch-job (“workload")
management system (called "Livermore Computing Resource Manager” or LCRM (URL.:
http://www.lInl.gov/LCdocs/dpcs)) with a commercial product from Cluster Resources, Inc. (URL:
http://www.clusterresources.com) called "Moab Workload Manager" (sometimes MWM but more often
just Moab). Moab fills the across-cluster job-scheduling, tracking, and reporting role that LCRM formerly
filled, while coordinating with SLURM (URL.: http://www.lInl.gov/LCdocs/slurm), which actually manages
nodes and allocates computing resources to jobs when they run on any specific LC cluster.

I I I I I I
LCRM		Moab		SLURM
tools	translation	tools	configuration	tools
and	---———-——	and	--——————————	and
features		features		features

batch-job
scheduling

« LCRM-Moab Translation.
As installed at LC, Moab is configured to transparently replace LCRM features with few user changes
needed. Those who run batch jobs can still use LCRM tools (such as PSUB to submit jobs), job-control
scripts (with imbedded #PSUB instructions), and job-monitoring reports (such as generated by
PSTAT), which Moab converts as needed automatically. Native Moab commands and features are
also available for those who prefer them. For more details on this LCRM-Moab conversion, see the
LCRM-Moab Interaction section (page 5) below.

« SLURM-Moab Interaction.
Moab and SLURM are both configured on LC machines to gracefully interact and smoothly coordinate
across-cluster (e.g., domain-wide limit) and within-cluster (e.g., node or CPU assignment)
job-management duties. For more details on this coordination, see the SLURM-Moab Interaction
section (page 24) below.

« Scheduling.
Moab fills, monitors, controls, and throttles an across-cluster queue of submitted batch jobs, just as
did LCRM. For a closer look at the job-scheduling policies that Moab uses, and how privileges and
exemptions work, see the Job Scheduling section (page 25) below.

« Remaining Time.
LCRM offered two ways (with signals and polling) for a job to detect its remaining time and manage
it for graceful termination. Several new alternatives are available under Moab (and SLURM). See
the Remaining Time Alternatives section (page 26) for a comparative explanation of each strategy.

Moab at LC - 4

http://www.llnl.gov/LCdocs/dpcs
http://www.clusterresources.com
http://www.llnl.gov/LCdocs/slurm

LCRM-Moab Translation

This section compares LCRM job-control features and tools with their Moab counterparts. It also
discusses when and how LC automatically translates from LCRM to Moab for situations where such
conversion is possible.

Tool Comparison
On LC machines where Moab has replaced LCRM, job-control tools fall into two broad groups:

« those former LCRM tools (such as PSUB) that are emulated by Moab (that is, they have been replaced
with wrapper scripts that accept most former LCRM-style execute lines and automatically convert
them to corresponding native Moab commands and options with no extra work on your part), and

« those tools (such as PSHARE) that you must abandon in favor of invoking new Moab counterparts
(such as MDIAG) explicitly, usually with different options or combinations of options to perform
the old functions.

Some old LCRM tools have no specific Moab counterparts (perhaps none are needed), and of course
some new Moab tools (for example, SHOWSTATYS) fill roles not addressed under LCRM. The table below
lists job-control tools by function (or role) and indicates which are emulated, which you must personally
replace with a Moab alternative, and which have no replacment (yet). Separate sections below spell out
for each tool's options that option's translation or substitution under Moab (if any).

All emulation wrapper scripts for LCRM tools, as well as all native Moab job-control tools, reside in
fusr/bin on those LC machines where Moab has been installed.

Moab at LC - 5

Function Original Emulated Similar
LCRM Tool by Moab? Moab Tool
Six core LCRM tools:
Submit a job PSUB yes MSUB
Change a submitted job PALTER yes MJOBCTL -m
Monitor submitted job(s) PSTAT -A yes SHOWQ
PSTAT -f CHECKJOB
Hold a sumbitted job PHOLD yes MJOBCTL -h
Release a held job PREL yes MJOBCTL -u
Remove a submitted job PRM yes MJOBCTL -c
Other job-control tools:
Report bank names, privileges BAC -u no MDIAG -u
Change default bank DEFBANK -u no MDIAG -u
Expedite a job PEXP no MJOBCTL -m
gos=expedite
Report production host status PHSTAT no MSHQOW -a
Report fair-share usage, shares PSHARE no MDIAG -f
Report running-job nodes, pools SPJSTAT no MJSTAT
Unmatched tools:
Report local job limits PLIM no [NEWS
job.lim.host]
Report global job limits BRLIM no [none]
Report... LRMMGR no MDIAG -t
host configurations, and show
default_config
“"constrainable” features show feature *
Report recent memory use PHIST no [none]
Report job-control efficiency [none] SHOWSTATS
Estimate when job will start [none] SHOWSTART
jobid
Report available node count [none] SHOWBF

Moab at LC - 6

Terminology Comparison

While there is a large vocabulary overlap among different job-control and resource-management
systems, some important distinctions have separate names and some common terms (such as 'partition’)
mean different things in different contexts. These terms appear not only in informal explanations (user
documentation) describing tools, but also as labels or headings within tool-generated status reports.

The table below summarizes the standard LCRM waorking vocabulary and shows for each term the
Moab and SLURM equivalent terms (if any).

LCRM M oab SLURM Brief Explanation
Term Term Term
user user user Person submitting a batch job
(e.g., gsmith)
- group group UNIX group of user
(e.g., Icstaff)
node node or host node A single motherboard, usually with
multiple CPUs
(e.g., atlas75)
host host host One or more nodes managed as a single
system
(e.g., atlas)
pool class or queue partition A subset of nodes on a host
(e.g., pbatch)
partition partition - One (with Moab) or more (with LCRM)
hosts managed as a scheduling unit
bank account - The "project” charged for resource use

(e.g., science)

job class QOS (quality of - Normal, standby, or expedited scheduling
service) status
priority priority - A job's relative ranking to run

(0 to 1 for LCRM,
-n to +m for Moab)

Moab and LCRM also use (mostly) different terminology to reveal the current state or status of a job
being managed by either system. For a comparison of their different approaches to job states and a
status-conversion table, see the "Job Status (State) Comparison" section (page 10) below.

Moabat LC -7

Environment Variables in LCRM and Moab

LCRM's Approach:
LCRM uses UNIX environment variables extensively to define the context for your batch job, execute the
job, and manage the job's resources (such as the paths searched or work directories used). The "Batch-Job
Environment Variables" section (URL.: http://www.lInl.gov/LCdocs/ev/index.jsp?show=s3.4) of LC's
Environment Variables user manual explains and compares in detail the four distinct sets of such variables
involved whenever LCRM runs a job.

In particular, LCRM uses the environment variables listed here to preserve information to pass to the
job from the host on which you submitted it:

PSUB_DEP_JOBID
PSUB_HOME
PSUB_HOST
PSUB_JOBID
PSUB_LOGNAME
PSUB_PATH
PSUB_REQNAME
PSUB_SUBDIR
PSUB_TZ_ENV
PSUB_USER
SESSARGS

If you submit a batch job using the PSUB emulator on an LC machine that has Moab installed in place
of LCRM, Moab mimics LCRM and sets these same PSUB environment variables for use by your job
when it runs. If you convert (page 16) your job-control script to Moab format, however, and submit it
using MSUB, then Moab handles relevant environment variables differently (see the next paragraph).

Moab's Approach:
As currently configured on LC machines, Moab uses no environment variables of its own to manage the
MSUB batch jobs that it runs. In particular, none of the variables listed above has any role at all for the
MSUB-format or "native" jobs that Moab manages. Likewise, the automatically purged temporary directory
whose name resides in PCS_TMPDIR for running LCRM jobs does not exist for native Moab jobs.

Instead, Moab relies on environment variables provided by (and assigned values by) each cluster's
underlying resource manager (at LC, that is always SLURM (URL.: http://www.lInl.gov/LCdocs/slurm)).
Moab at LC currently uses the following SLURM-assigned environment variables (as explained in the
"Environment Variables" section (URL.: http://www.lInl.gov/LCdocs/slurm/index.jsp?show=s4.2.8) of the
SLURM Reference Manual or in SRUN's MAN page) when it runs a batch job:

Moab at LC - 8

http://www.llnl.gov/LCdocs/ev/index.jsp?show=s3.4
http://www.llnl.gov/LCdocs/slurm
http://www.llnl.gov/LCdocs/slurm/index.jsp?show=s4.2.8

SLURM_CPU_BIND_LIST
SLURM_CPU_BIND_TYPE
SLURM_CPU_BIND_VERBOSE

SLURM_JOBID

SLURM_LOCALID

SLURM_MEM_BIND_LIST
SLURM_MEM_BIND_TYPE
SLURM_MEM_BIND_VERBOSE

SLURM_NNODES

SLURM_NODEID

SLURM_NODELIST

SLURM_NPROCS

SLURM_PRI0O_PROCESS (added just for Moab)
SLURM_PROCID

SLURM_TASKS_PER_NODE

SLURM_TASK_PID (added just for Moab)
SLURM_UMASK (added just for Moab)

If your Moab-managed job needs any environment variables besides those listed above, you have two
choices to supply them:
(a) invoke MSUB's -V (uppercase vee) option to export all environment variables from your job's submittal
environment to its execution environment, or
(b) invoke MSUB's -v (lowercase vee) option to export only those submittal-environment variables that
you specify on the MSUB execute line.

Moab at LC - 9

Job Status (State) Comparison

Job states or status values reported for LCRM by PSTAT -A or for Moab by SHOWQ or CHECKJOB
are intended to reveal whether or not a submitted job is running, and, if not running then the reason it is
not.

While some states or status values are fairly self-explanatory (RUN), others call for "insider"” technical
information to properly interpret (see the long explanation of the 47 different possible LCRM job states
in the "Status Values" section (URL.: http://www.lInl.gov/LCdocs/dpcs/index.jsp?show=s4.1) of the LCRM
Reference Manual, for example). To further complicate this state-interpretation problem, the same waiting
job often has a different reported status at the same time depending on whether the job-reporting tool is
provided by LCRM (e.g., ELIG), by Moab (e.g., IDLE), or by SLURM (e.g., PENDING).

The first subsection below tells how to discover the state of a Moab-scheduled job, lists the possible
Moab state values, and shows where to get further job-state explanations from Moab. The second subsection
reveals for each job state reported by LCRM the corresponding status used by Moab (if there is one).

Moab at LC - 10

http://www.llnl.gov/LCdocs/dpcs/index.jsp?show=s4.1

Moab Job States

HOW.
You can discover the state (current status) of a Moab-scheduled job nnnnn by using either:

e CHECKJOB nnnnn
and then looking on the report's second row, marked STATE, or

« SHOWQ
and then looking in the report's third column (headed STATE), where job numbers appear in sequence
in the first column.

WHAT.
Possible Moab job states are (in alphabetical order):

BatchHold
Completed
Deferred
Idle
NotQueued
Removed
Running
Staging
Starting
Suspended
SystemHold
UserHold

WHY.
Moab intends its job states to be "self-explanatory" in the sense that they offer no underlying explanation
at all. For example, a job might be IDLE because a higher-priority job is running, because a job on which
the IDLE job depends has not yet completed, or because of insufficient required resources. LCRM's many
job state names tried to reveal why each job was in its current state. With Moab, you must dig for that
explanatory information by running CHECKJOB and studying the last few lines of its long report (the
section headed NOTE:, where specific job dependencies and unmet needs are spelled out).

Moab at LC - 11

Moab Equivalents of LCRM Job States

LCRM used almost 4 dozen descriptive tags to report the current status of a job and to (also) suggest
why the job was in that state (e.g., WAIT to show that a job had not started specifically because its assigned
start time had not yet arrived). The "Status Values" section (URL.:
http://www.lInl.gov/LCdocs/dpcs/index.jsp?show=s4.1) of the LCRM Reference Manual explains the
hidden meaning of every LCRM job state.

This table shows for each (alphabetical) LCRM job state (status) the corresponding job state assigned
by Moab, if there is one. Often multiple LCRM states map into a single Moab state, and some former
LCRM states (usually involving limits) are no longer enforced (and so will never appear in PSTAT reports)
on Moab-scheduled LC machines.

LCRM M oab

Job State Job State
ACCOVER [no longer enforced]
BAT_WAIT Staging
CMPLETED Completed
CPU&TIME Idle

CPUS>MAX Idle

DEFERRED Deferred
DELAYED [no longer enforced]
DEPEND Idle

ELIG Idle

ELIG_SBY Idle

HELDs BatchHold, SystemHold
HELDu UserHold
HLD_IDL UserHold
HOLDING SystemHold
JRESLIM [no longer enforced]
MULTIPLE Idle

NEW Staging

NOACCT [no longer enforced]
NOBANK [no longer enforced]
NOCONF SystemHold
NODE>MAX Idle

NODE<MIN Idle

NONEW Idle

NOPRISRV Idle

NOTIME [no longer enforced]
NRESLIM [no longer enforced]
NTRESLIM [no longer enforced]
PTOOBIG [no longer enforced]
QCKPLIM Idle

Moab at LC - 12

http://www.llnl.gov/LCdocs/dpcs/index.jsp?show=s4.1

LCRM M oab

Job State Job State
QTOTLIM [no longer enforced]
QTOTLIMU [no longer enforced]
REMOVED Removed

RES WAIT [no longer enforced]
RM_WAIT Removed
RM_PEND Removed

RUN Running

RUN_SBY Running

STAGING Staging
TERMINATED Removed
TOOLONG [no longer enforced]
TQUOTA [no longer enforced]
WAIT Idle

WCPU Idle

WHOST NotQueued

WMEM [no longer enforced]
WMEML [no longer enforced]
WMEMT [no longer enforced]
WPRIO Idle

Moab at LC - 13

PSUB Options Conversion

On LC machines where Moab has replaced LCRM, you can still invoke PSUB to submit a job script,
and you can still include PSUB options either on the execute line or within the script as #PSUB directives.
An emulator or "wrapper script” automatically attempts to convert your PSUB job into an MSUB job that
Moab can manage. The first subsection below explains the four categories of PSUB job-control options
and tells how each category is handled during the attempted conversion for MSUB. The other subsections
then reveal for those PSUB options that have MSUB counterparts what the translation is and what its
implications are for how your job will behave.

Summary of Accepted, Ignored, Rejected PSUB Options

LC divides all PSUB job-control options into four groups based on the level of support that they receive
from Moab's MSUB tool.

(1) ACCEPTED (Translated):
The PSUB emulator (wrapper script) accepts each of these PSUB options, translates it into a functionally
equivalent MSUB option, and then submits the job using the option as one of its run specifications. (For
examples and explanatory commentary, see the task-oriented (not alphabetical) analysis of accepted options
below (page 17).)

PSUB Option MSUB Counterpart
-A -a

-b -A

-C -1 feature=

-d -1 depend=

-e -e

-eo = |

-expedite -1 gos=expedite
-H --help

-1

-1IM

-In -1 nodes=

-mb -m b

-me -m e

-nokill -1 resftailpolicy=ignore
-nr -rn

-0 -0

P P

-pool -q

-prj -1 project=

-r -N

-S -S

-standby -1 gos=standby
-t -1 walltime=
-tW -1 walltime=

-V

-X -V

Moab at LC - 14

(2) IGNORED (With Warning):
The PSUB wrapper script ignores each of these PSUB options (because they have no MSUB counterpart
or because LC has not yet implemented this Moab feature), always issues a warning that this job specification
is being ignored, and then submits the job without it.

-Ic
-1d
-IF
-If
-lo
-Ir
-Is
-1t

(3) IGNORED (Without Warning):
The PSUB wrapper script ignores each of these PSUB options (many are seldom needed or obsolete) but
it does not warn that they have been discarded (unless you explicitly request verbose reporting with -v).
The job is submitted without these specifications (although you may reimpose some of them by invoking
SLURM's SRUN command inside your job script; see below (page 23)).

-cpn
-creds

-dm

-exempt

-9

-ke

-ko

-mn

-nc

-net
-nettype
-nobulkxfer
_np

-re

-ro

(4) REJECTED:
The PSUB wrapper script rejects each of these PSUB options (as not implemented on current Moab
machines at LC or otherwise impossible to support) and then rejects the whole requested job submittal
because of them. Moab does not try to run jobs with rejected options.

-bgl [unique to BG/L machines]

Moab at LC - 15

Script Converter (LCRM2MOAB)

To change an LCRM job-control script (with included #PSUB directives) into a "native Moab" script
for use with MSUB, you can log on to any LC machine where Moab has been installed and run the
LCRM2MOAB script converter by typing

| crn2noab -1 your psubscri pt

where LCRM2MOAB
« resides in /usr/bin.

- reports to your terminal (or to a file if you redirect its output for study later) the same warnings about
unsupported PSUB options ("option -It is ignored in Moab™") that you would see if the included
#PSUB directives were on the PSUB execute line when you ran Moab's PSUB emulator (and helpfully,
even options ignored without warning when you run PSUB are still reported by LCRM2MOAB,
such as -ro).

» generates (in the directory where you run LCRM2MOAB) an output file called
jobScript.moab.nnnnn
which contains a (partial) translation of your original PSUB job script into an MSUB job script for
your review:

¢ Translatable ("accepted") #PSUB options/directives are converted into their correct MSUB
counterparts with the original directive preserved as a comment. For example,
#MSUB -l walltime=40 ##PSUB -tM 40

¢ Untranslatable ("ignored™) #PSUB options/directives are removed from the output file entirely.
No ##PSUB comment marks their former place in the MSUB version of the script.

¢ WARNING: Environment variables (page 8) that exist only for PSUB jobs are not converted,
flagged, or removed in the MSUB version of the script. For example, the line
echo jobid = $PSUB_JOBID
would remain in LCRM2MOAB's output script even though it could not work in a native
MSUB job. You must find and convert or remove such imbedded PSUB environment variables
yourself.

Moab at LC - 16

Basic PSUB/MSUB Options

Moab accepts four kinds of basic PSUB job-sumbittal options and implements them with MSUB
counterparts.

JOB DEPENDENCIES:

-A holds your batch job until the specified date and time of day (in many supported
formats).
MSUB uses: -a [[[[CC]YY]MM]DD]hhmm[.SS]
Example: -a 10151400
holds the job until October 15 at 2:00 p.m. (this date string contains no punctuation).

-b specifies the bank (MSUB calls it an account) from which your job's used resources
are drawn.
MSUB uses: -A accountname
Example: -A science

-C specifies the "constraints™ or features that a host must have to run your job.
MSUB uses: -l feature=value
Example: -1 feature=lustre
Run MDIAG -t on any target cluster to discover its current constraints (called
"features").

-d specifies the PSUB jobid of a job that must complete before this job can start.
MSUB uses: -l depend=aftercompletion:msubjobid
Example: -1 depend=aftercompletion:12345

Moab at LC - 17

EXECUTION DETAILS:

-H

-mb

-me

-nokill

-nr

(help) lists all PSUB execute-line options and ends.
MSUB uses: --help
This is a syntax reminder only, not an explanatory help message.

specifies a file name (default is submitdir/yourscript.ejobid) for job error messages.
MSUB uses: -e (default is the same)

Use an absolute pathname with -e to avoid your submittal directory, or use -eo (MSUB
-J, see the next item) to put error and log messages into one output file named by -0
(a recommended strategy).

combines ("joins™) error and log messages into one output file named by -o.
MSUB uses: -j [oe|n] (argument oe merges output, n does not)
Example: -j oe (the merged file is named by -0)

sends mail to you (from SLURM) when your job begins.
MSUB uses: -m b
This really invokes the SRUN option --mail-type=Dbegin.

sends mail to you (from SLURM) when your job ends.

MSUB uses: -m e

This really invokes the SRUN option --mail-type=end. Also, native MSUB accepts
-m be

to simultaneoulsy request mail when your job both begins and ends.

continues to run a job even if a node allocated to the job fails (one job step will likely
be lost but subsequent steps may still run if the job has built-in fault tolerance).
MSUB uses: -l resfailpolicy=ignore

Moab treats such fault tolerance as a job "resource."

prevents rerunning a job (that is, beginning its execution again from step one) rather
than just restarting it (continuing on from a checkpoint). Rerunning is the default
behavior for both LCRM and Moab.

MSUB uses: -rn

While restarting a job is often desirable, trying to rerun it from the beginning may
just waste resources. Hence this is often a default worth overriding with this option.

specifies a file name (default is submitdir/yourscript.ojobid) for job log messages.
MSUB uses: -0 (default is the same)

Example: -o /g/g16/jfk/mylogs/log_abc

To avoid losing your log file in your submittal directory, specify a better-planned
location here with an absolute pathname that will help you later.

Moab at LC - 18

-prj

specifies a convenient project name (any string up to 127 characters) used in
subsequent PSTAT reports about this job.

MSUB uses: -l project=string

Example: -1 project=bigtest

specifies a job name (up to 15 characters, % is not allowed and the first character
cannot be a digit) for use in subsequent reports. The LCRM default job name is the
name of the job's script.

MSUB uses: -N jobname

Example: -N testrun27a

Moab also uses your job's script name as its default job name.

(lowercase ess) specifies the absolute pathname of the shell that your job should use
(the default varies by machine).

MSUB uses: -S shellpath

Example: -S /bin/csh

Note that MSUB uses uppercase ess for this option. Another way to specify your
job's shell is to use the sting #!shellpath as the very first executable line within your
script (after the #PSUB or #MSUB directives).

(lowercase vee) verbosely reports nonfatal errors detected when you submit your job.
MSUB uses: MSUB automatically reports nonfatal errors during job submittal.
Note that MSUB's native -v (lowercase vee) option has a very different role, to export
specified environment variables to the job's execution environment. See -x below.

(lowercase eks) exports all environment variables from your submittal environment
to your job's execution environment.

MSUB uses: -V (uppercase vee)

Note the difference between MSUB's -v (lowercase, described in the preceding item)
and -V (uppercase, described here) options.

Moab at LC - 19

POLITICAL:

-p prio

-expedite

-standby

(for authorized users only) overrides your job's fair-share political priority and forces
it to value prio.

MSUB uses: -p prio

where prio is any integer from -1024 to +1023 (the default is 0).

Example: -p 500

(for authorized users only) starts your job as soon as possible (PSUB accepts this
option from other users but ignores it).

MSUB uses: -I gos=expedite

MSUB regards this as a "quality of service™ job resource.

(for any user) gives your job such a low priority (STANDBY class) that it runs only
if no normal or expedited jobs are available to run.

MSUB uses: -l gos=standby

MSUB regards this as a "quality of service™ job resource.

Moab at LC - 20

RESOURCE USE:

-IM

-pool

specifies your job's per-node (high-water-mark) memory needs (or "resident set size")
as advice for the LCRM scheduler (not an enforced limit).

MSUB uses: -I pmem=mmmm[kb|mb|gb]

Currently accepted but ignored, not actually used for LC MSUB jobs.

Example: -l pmem=512mb

specifies a named subset of nodes (MSUB calls this a queue) where your job should
run.

MSUB uses: -¢ poolnhame

Example: -q pdebug

specifies the maximum CPU time per task (in minutes by default).
MSUB uses: NOT offered by MSUB, see -tW instead.

specifies the maximum wallclock time (elapsed run time) for your job (in minutes by
default).

MSUB uses: -l walltime=nnn

Example: -1 walltime=3600

WARNING: MSUB uses seconds as its default time unit and uses the format
HH:MM:SS to change units. Thus

3600 [seconds]
600:00 [minutes]
10:00:00 [hours]

all express the same amount of elapsed time for MSUB.

Moab at LC - 21

Parallel PSUB/MSUB Options

The PSUB options most relevant to managing parallel jobs are:

_np

(default was 1, replaced -cpn) formerly specified CPUs per node but now is just
advisory. PSUB's -In now fills this role (see below).

MSUB uses: the counterpart option -I ppn=num is not now implemented for
Moab-scheduled clusters at LC. Instead use

-1 nodes=num (see next item)

or invoke specific SRUN node-control options within your job's own script.

requests at least minnodes for your job and optionally a node-count range from
minnodes-maxnodes, perhaps with specified attributes (such as CPUs or memory)
per node.

MSUB uses: -1 nodes=num

WARNING: attribute support with this -l suboption is not currently implemented on
LC's Moab-scheduled clusters (so do not try -I nodes=32:ppn=4). Instead, invoke
SLURM's SRUN tool within your job's script and specify your node attribute needs
by using SRUN options directly.

Moab at LC - 22

SRUN-Replaced PSUB/MSUB Options

Some PSUB options for which no MSUB counterparts exist (and hence which are ignored, not
implemented, by Moab) can nevertheless be implemented on the specific cluster where your job runs by
executing SLURM's SRUN utility inside your job-control script and invoking suitable SRUN within-cluster
options.

The PSUB options for which this SRUN-replacement strategy is relevant appear to be these:

PSUB SRUN Alternative
-np (formerly -cpn) --ntasks (-n)

(AIX only, and Moab is not yet on any AIX LC machine)

-g --network (IP | US)

-net --network (MP1 | LAPI)
-nettype --network (SN_ALL | SN_SINGLE)
-nobulkxfer --network (BULK_XFER)

Details will go here when available.

Moab at LC - 23

SLURM-Moab Interaction

Configuration:
When properly integrated in a production computing environment (such as LC's set of clusters on OCF or
SCF), Moab primarily manages batch jobs (among clusters) while SLURM primarily manages compute
resources (on each cluster). SLURM fills the role "below Moab" formerly filled by LoadLeveler on IBM
AIX machines. Each of these software products must be appropriately configured to interact successfully
with the other. Relevant background documentation includes:

» Moab-SLURM Integration Guide (URL:
http://wwww.clusterresources.com/products/mwm/docs/slurmintegration.shtml)
http://www.clusterresources.com/products/mwm/docs/slurmintegration.shtml
is published by Cluster Resources, Inc., and gives four pages of steps to follow and decisions to make
for Moab abministrators.

» Moab Cluster Suite Integration Guide (URL: http://www.lInl.gov/linux/slurm/moab.html)
http://www.lInl.gov/linux/slurm/moab.html
is published by Lawrence Livermore National Laboratory's SLURM project. It gives two pages of
preparation and configuration steps to enable a smooth SLURM interface with Moab.

Of course, neither of these general documents for system administrators can reveal for typical users
the specific configuration decisions made on LC production machines (nor any between-machine differences
here). Disclosing those LC-local configurations is the (future) purpose of this section.

Environment Variables:
Also note that while LCRM deployed quite a number of its own environment variables to manage batch
jobs submitted to it, Moab (as currently configured at LC) relies exclusively on SLURM-assigned
environment variables for job control (as discussed above (page 8)). Most of these SLURM environment
variables (and their equivalent SRUN options) are explained in the "Environment Variables" section (URL.:
http://www.lInl.gov/LCdocs/slurm/index.jsp?show=s4.2.8) of LC's SLURM Reference Manual.

SRUN Options:
Some PSUB job-control options have no direct MSUB counterpart, but nevertheless you can use SLURM's
SRUN utility inside your job script to achieve similar results. See the section above (page 23) on
"SRUN-Replaced PSUB/MSUB Options™ for more details (when available).

Moab at LC - 24

http://wwww.clusterresources.com/products/mwm/docs/slurmintegration.shtml
http://www.llnl.gov/linux/slurm/moab.html
http://www.llnl.gov/LCdocs/slurm/index.jsp?show=s4.2.8

Job Scheduling

As the "Job Scheduling” section (URL.: http://www.lInl.gov/LCdocs/dpcs/index.jsp?show=s4.5.2) of
the LCRM Reference Manual reveals in detail, LCRM assigns each job a scheduling priority that equals
the weighted sum of three underlying subpriorities:

- Political priority--
a "fair share" measure of the computing resources already consumed by the job's user or bank
compared with the share of resources that "should have" been consumed. In general, underserved
users get priority over those that have recently used many resources. This value is heavily weighted.

= Aging priority--
a measure of how long a job has waited for resources compared to other competing jobs. This value
is moderately weighted.

« Technical priority--
a measure of how efficiently a job can actually use available computing resources (nodes, memory,
run time, etc.) compared to other jobs competing for those same resources. This value is lightly
weighted.

Moab offers batch-queue administrators these same three subpriorities as well as several others.
Currently, Moab is configured to use these three subpriorities in the same way and to the same extent
(weighting) as LCRM does, and not to use any additional job subpriorities to actually schedule pending
jobs. The current Moab scheduling weights are:

Political: 70%
Aging: 0%
Technical: 30%

Different weightings, and perhaps even a different mix of scheduling subpriorities, are possible in the
future as LC gains more experience deploying Moab with "normal” production workloads.

Moab at LC - 25

http://www.llnl.gov/LCdocs/dpcs/index.jsp?show=s4.5.2

LIBLRM (Remaining Time) Alternatives for Moab

This section compares the different ways available to a job running under Moab for discovering how
much time remains before the job is terminated.

LIBLRM ROLE:
On LCRM-scheduled machines the API library /usr/local/lib/liblrm served two roles--
(2) It provided calls to query a user's banks and charge the calling job to a different bank.
(2) It provided calls to warn a job when its requested and scheduled time limit was about to be reached.
LIBLRM is not available on Moab-scheduled machines, however.

ALTERNATIVES:
Two different strategies allow a job to discover when its time limit is about to be reached (requesting a
signal near the end and polling for its remaining time). How best to implement either of these strategies
depends on the job's scheduler (Moab or LCRM), on the resource manager (SLURM or not), and on the
other places where you also need to run the same application. These charts summarize the alternatives,
while the subsections below explain and compare them in detail.

REQUEST A SIGNAL:

For this environment Usethislibrary Usethisroutine
LCRM scheduled liblrm Irmsig_register,
Irmgettime
Moab emulating LCRM liblrmemu Irmsig_register,
Irmgettime
Native Moab scheduled msub -1 signum
or

psub -S signum

Moab at LC - 26

POLL FOR REMAINING TIME:

For this environment Usethislibrary Usethisroutine
LCRM scheduled liblrm Irmwarn
or
libyogrt yogrt_remaining
Moab emulating LCRM liblrmemu Irmwarn
or
libyogrt yogrt_remaining
Native Moab scheduled
..... with SLURM libslurm slurm_get_rem_time
or
libyogrt yogrt_remaining
..... without SLURM Moab API MCClJobGetRemainingTime
or
libyogrt yogrt_remaining

Moab at LC - 27

LCRM Emulation Library (LIBLRMEMU)

On machines scheduled by Moab instead of LCRM, liblrm is not available. However, LC provides a
shared (not static) emulation library called liblrmemu to fill the same role. Jobs can make all the same calls
to liblrmemu that they formerly made to liblrm, allowing you to leave your application codes unchanged.
The time-remaining calls get time information in a different way that does not depend on LCRM, while
the bank calls simply yield no results (details in the subsections below).

LIBLRMEMU Bank Routines

The LCRM library liblrm allowed you to list all banks, your current bank, and your default bank. Jobs
could also change their current or default bank while underway. While Moab "accounts” function somewhat
like LCRM banks, there are no "current™ accounts and jobs cannot dynamically change their default Moab
account. Hence, in emulation library liblrmemu these five routines are present for backward compatibility

Irmgetal lbanks()
Irmgetcurbank()
Irmgetdefbank()

Irmsetcurbank()
Irmsetdefbank()

but none of them actually works (they are all "no-ops").

LIBLRMEMU Signal Emulation
Under LCRM, your job could call

int Irmsig_register (int sig, long mintime, int *lrmstatp);

to request from LCRM a (user-specified) signal when the (user-specified) time remaining had been reached.
When that time was reached, LCRM signaled your job, which could then confirm the time remaining by
calling either

int Irmgettime (long *total, long *used, long *maxtime,
long *avail, int *lIrmstatp);

or

int Irmgetresource (long *total, long *used, long *maxtime,
long *avail, long *stoptime, long *arus,
long *maxarus, long *memint,
long *maxmemint, int *lIrmstatp);

After confirmation, your job (typically) saved its data and ended gracefully.

The liblrmemu emulation library supports all three of these signal-management routines for backward
compatibility. But liblrmemu, unlike liblrm, populates only the AVAIL and STOPTIME parameters of the
latter two routines. Note also that the libslurm library routine slurm_get_rem_time does not successfully
return a job's grace time on any LCRM-scheduled machine. So libslurm is not a completely portable

Moab at LC - 28

substitute for Irmgettime or Irmgetresource even across SLURM-managed clusters at LC. See the "Polling
for Time Remaining" section (page 32) below for more details.

LIBLRMEMU Polling Emulation

Instead of registering a signal, the second liblrm grace-time method sets a local flag and passes a
reference to this flag along with the desired grace time to the library routine

int Irmwarn (int sig, log mintime, int *warn,
long *stoptime, int *lrmstatp);

The job polls this flag regularly, and LCRM changes the flag when the remaining time reaches the requested
grace period.

The emulation library liblrmemu supports Irmwarn by forking a new process that periodically invokes
the libyogrt library (page 30) routine yogrt_remaining to detect your job's remaining time and set WARN
when this drops below MINTIME (it also sets STOPTIME). Because of this internal dependence on the
libyogrt library, you may prefer to use that alternative directly in your job (see the next section for details).

Moab at LC - 29

LIBYOGRT Remaining Time Library

PORTABILITY:

The LC-developed dynamic libyogrt library provides a simple, fast, portable way for a parallel application
to determine how much time remains before it will terminate (the name is an acronym for "your one get
remaining time" library). Unlike some of the other methods discussed here, libyogrt works with either the
Moab or the LCRM job scheduler and with either the Linux/CHAQS or the AlX operating systems. Each
system administrator installs the appropriate version of libyogrt so that once your code calls it you need
change nothing for it to get a job's remaining time in a great variety of execution environments. (Note that
installation locations vary. For example, libyogrt is hidden in /opt/freeware/lib on AIX machines.)

TIME SOURCES:
The key libyogrt routine, yogrt_remaining, gets your job's remaining run time from
(1) the SLURM underlying resource manager if SLURM is in use, or if not then from
(2) the Moab scheduler, or if not in use then from
(3) the LCRM scheduler.
These three cases cover all possible LC batch-job system configurations. And libyogrt can be easily extended
to cover all available ASC tri-lab system configurations as well.

PERFORMANCE:
The routine yogrt_remaining is specifically designed not to undermine the performance of large parallel
applications. Once it gets the remaining time from one of the three sources cited above, it maintains an
internal cache so that subsequent calls involve only the time() routine and simple arithmetic.

USAGE:
Libyogrt's countdown starts the first time that your job calls the library (but not before that). So you should
invoke yogrt_remaining once at the start of your application to begin properly:

while [work] {
if (yogrt_remaining(0) < gracetime) {
save_state();
exit(0);

by
do_work(Q);

Yogrt_remaining returns the number of seconds left in your job's wall-time resource allocation. Note that
only taskO of a parallel application can call yogrt_remaining successfully (calling it from any other task
returns -1).

ENVIRONMENT VARIABLES:
You can change libyogrt's default behavior by setting any of several relevant environment variables (but
this is seldom needed or even desirable). For example, if you assign an integer value in seconds to the
YOGRT_REMAINING environment variable (such as YOGRT_REMAINING=3600 for 1 hour), then a
call to the yogrt_remaining routine will count down from that assigned value instead of from the time
returned by the local resource manager or scheduler. The local libyogrt MAN page notes a few other exotic
cases.

Moab at LC - 30

Native Moab and SLURM Time APIs

If your job will no longer run on any LCRM-scheduled machine, you can abandon backward-compatible
ways to get its remaining wall-clock time. Signal support is available directly from Moab, while both Moab
and SLURM offer native polling routines. (Of course, as noted in the previous section, libyogrt (page 30)
provides automatic LCRM compatibility without sacrificing forward integration with Moab or SLURM
to report remaining job time in computing environments where LCRM is absent.)

Requesting a Signal From Moab

For jobs that will never run under LCRM but only under Moab, you can request a signal when a specified
grace time is reached when you submit the job to Moab for scheduling. Use either of these job-submittal
execute lines (on LC machines):

msub -1 si gnunber [@renmseconds]]

psub -S si gnunber [@renmseconds]]

(for example, msub -1 32@120) where

signumber is an integer that specifies which signal your job wants to receive when its grace time
is reached (you must provide your own signal handler), and

remseconds is your preferred grace time (the time remaining in seconds until your job will be
terminated). Moab's default remseconds is 60.

Moab at LC - 31

Polling for Time Remaining (Moab, SLURM)

For jobs that will never run under LCRM but only under Moab (or on machines where SLURM manages
the underlying compute resources), you can poll for your job's remaining wall time using native SLURM
or Moab library routines. The former approach is very accurate, while the latter is accurate to within a
minute only.

SLURM Library:
On all SLURM-managed clusters (regardless of operating system), libslurm offers

long slurm _get rem_time (
uint32_t jobid);

which returns the number of seconds remaining before a job (with SLURM jobid) exhausts either its own
time limit or that of the SLURM partition in which it runs (whichever is smaller). Routine
slurm_get_rem_time caches the remaining time locally and only checks the SLURM controller once per
minute.

WARNING: On LCRM-scheduled systems where SLURM has replaced LoadLeveler, SLURM is not
aware of job time limits, so never use routine slurm_get_rem_time on LC machines still scheduled by
LCRM.

Moab Library:
Moab (on LC machines and even on other ASC tri-lab machines) provides its own native C-language API
that returns a job's remaining time regardless of the underlying resource manager. The routine is

MCCJobGetRemainingTime(C,JID,Time,EmsQ)

where C is the address of the interface handle, JID is the job's Moab ID, Time is the remaining time in
seconds, and Emsg is an optional human-readable error message. This approach is not as accurate as using
libslurm's slurm_get_rem_time in environments where both are available. For more background on the
Moab C-langauge API, consult this vendor website:

http://www.clusterresources.com/products/mwm/moabdocs/a.hinterfacing.shtml

Moab at LC - 32

http://www.clusterresources.com/products/mwm/moabdocs/a.hinterfacing.shtml

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific commercial
products, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States Government or the
University of California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government thereof, and shall not be used for advertising or product
endorsement purposes.

(C) Copyright 2007 The Regents of the University of California. All rights reserved.

Moab at LC - 33

Keyword Index

To see an alphabetical list of keywords for this document, consult the next section (page 35).

scope
availability

who

introduction

Icrm
tooljcomparison
terminology

environment-variables

job-status

job-state
job-state-moab

job-state-lcrm
psub-options

psub-options-summary

Icrm2moab
basic-options
parallel-options
srun-replaced

slurm

scheduling

get-time-libraries
liblrm-replacements
lLiblrmemu
liblrmemu-bank
liblrmemu-signal
liblrmemu-poll
libyogrt
native-time
native-time-signal

native-time-poll

index

Description
This entire document.
The name of this document.
Topics covered in this document.
Where Moab runs.
Who to contact for assistance.

Moab®"s relation to LCRM and SLURM.

Moab counterpart for LCRM features, tools.
Moab and LCRM job-control tools compared.
Moab, LCRM, SLURM vocabulary differences.
Different env var treatments in Moab, LCRM.
Moab and LCRM job states compared.

Moab and LCRM job states compared.

Possible Moab job states.

Moab equivalents for LCRM job states.

How Moab (MSUB) handles PSUB options.
Accepted, ignored, rejected PSUB options.
Using LCRM2MOAB script-conversion tool.

How MSUB implements basic PSUB options.

How MSUB implements parallel PSUB options.
How SRUN options replace some PSUB options.

How Moab and SLURM interact.
How Moab schedules batch jobs.

Get remaining time without LIBLRM.
Get remaining time without LIBLRM.
LCRM emullation library for Moab.
LIBLRMEMU bank routines.

LIBLRMEMU signal emulation.
LIBLRMEMU polling emulation.
LIBYOGRT to get remaining time.
Native Moab, SLURM time APIs.

Time signals from Moab.

Time polling with Moab, SLURM.

The structural index of keywords.
The alphabetical index of keywords.
The latest changes to this document.
The complete revision history.

Moab at LC - 34

Alphabetical List of Keywords

availability
basic-options

date

entire
environment-variables

get-time-libraries
index

introduction
job-state
job-state-lcrm
job-state-moab
job-status
Icrm

Icrm2moab
liblrm-replacements
liblrmemu
liblrmemu-bank
liblrmemu-poll
liblrmemu-signal
libyogrt
native-time
native-time-poll
native-time-signal
parallel-options
psub-options
psub-options-summary
revisions

scheduling

scope
slurm

srun-replaced
terminology
title
tool-comparison
who

Description
The alphabetical index of keywords.
Where Moab runs.
How MSUB implements basic PSUB options.
The latest changes to this document.
This entire document.
Different env var treatments iIn Moab, LCRM.
Get remaining time without LIBLRM.
The structural index of keywords.
Moab®"s relation to LCRM and SLURM.
Moab and LCRM job states compared.
Moab equivalents for LCRM job states.
Possible Moab job states.
Moab and LCRM job states compared.
Moab counterpart for LCRM features, tools.
Using LCRM2MOAB script-conversion tool.
Get remaining time without LIBLRM.
LCRM emullation library for Moab.
LIBLRMEMU bank routines.
LIBLRMEMU polling emulation.
LIBLRMEMU signal emulation.
LIBYOGRT to get remaining time.
Native Moab, SLURM time APIs.
Time polling with Moab, SLURM.
Time signals from Moab.
How MSUB implements parallel PSUB options.
How Moab (MSUB) handles PSUB options.
Accepted, ignored, rejected PSUB options.
The complete revision history.
How Moab schedules batch jobs.
Topics covered in this document.
How Moab and SLURM interact.
How SRUN options replace some PSUB options.
Moab, LCRM, SLURM vocabulary differences.
The name of this document.
Moab and LCRM job-control tools compared.
Who to contact for assistance.

Moab at LC - 35

Date and Revisions

Revision Keyword Description of

Date Affected Change

17Jul07 job-state-moab Possible Moab job states added.
job-state-Icrm LCRM/Moab state conversion added.
index New keywords for new subsections.

18Jun07 environment-variables

MSUB®"s -V and -v roles contrasted.
basic-options -1 dependency corrected to -1 depend.

libyogrt Restriction to taskO noted.
16May07 lLiblrm-replacements

New major section on ways to

"'get remaining time" for a job.
basic-options 16 more PSUB/MSUB option comparisons.
parallel-options

Two comparisons elaborated.
introduction Cross ref to new subsections added.
index New keywords for new subsections.

26Mar07 tool-comparison
PHIST, SHOWBF added to chart.
environment-variables
Cross ref, Moab roles added.
srun-replaced -n same as --ntasks.

07Mar07 entire First edition of Moab manual.

TRG (17Jul07)

UCRL-WEB-228716
Privacy and Legal Notice (URL: http://www.lInl.gov/disclaimer.html)
TRG (17Jul07) Contact on the OCF: Ic-hotline@IInl.gov, on the SCF: Ic-hotline@pop.linl.gov

Moab at LC - 36

http://www.llnl.gov/disclaimer.html

	Preface
	Introduction
	LCRM-Moab Translation
	Tool Comparison
	Terminology Comparison
	Environment Variables in LCRM and Moab
	Job Status (State) Comparison
	Moab Job States
	Moab Equivalents of LCRM Job States

	PSUB Options Conversion
	Summary of Accepted, Ignored, Rejected PSUB Options
	Script Converter (LCRM2MOAB)
	Basic PSUB/MSUB Options
	Parallel PSUB/MSUB Options
	SRUN-Replaced PSUB/MSUB Options

	SLURM-Moab Interaction
	Job Scheduling
	LIBLRM (Remaining Time) Alternatives for Moab
	LCRM Emulation Library (LIBLRMEMU)
	LIBLRMEMU Bank Routines
	LIBLRMEMU Signal Emulation
	LIBLRMEMU Polling Emulation

	LIBYOGRT Remaining Time Library
	Native Moab and SLURM Time APIs
	Requesting a Signal From Moab
	Polling for Time Remaining (Moab, SLURM)

	Disclaimer
	Keyword Index
	Alphabetical List of Keywords
	Date and Revisions

